# เซตวิภัชนัยใน $\Gamma$ -ริงใกล้ไม่เปลี่ยนหมู่ On Fuzzy Sets in nonassociative $\Gamma$ -Near Rings

# Rachadaporn Timun and Pairote Yiarayong

Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat
University, Phitsanuloke 65000, Thailand
\*E-mail: pairote0027@hotmail.com

## บทคัดย่อ

วัตถุประสงค์ของบทความนี้คือการแนะนำแนวความคิดของริงย่อย  $\Gamma$  -nLA ไอดีลทางซ้ายวิภัชนัยและไอดีล ทางขวาวิภัชนัยในริง  $\Gamma$  -nLA และเพื่อศึกษาริงย่อย  $\Gamma$  -nLA ไอดีลทางซ้ายวิภัชนัยและไอดีลทางขวาวิภัชนัยในริง  $\Gamma$  -nLA และลักษณะเฉพาะบางประการของไอดีลทางซ้ายวิภัชนัยและไอดีลทางขวาวิภัชนัยในริง  $\Gamma$  -nLA ที่ เกี่ยวข้องกับไอดีลทางซ้าย (ขวา) ระดับ

คำสำคัญ :  $\Gamma$  -nLA-ริง ไอดีล ระดับ ไอดีลทางซ้าย

#### Abstract

The purpose of this paper is to introduce the notion of  $\Gamma$ -nLA-subring, fuzzy left and fuzzy right ideals in  $\Gamma$ -nLA-rings, and to study  $\Gamma$ -nLA-subring, fuzzy left and fuzzy right ideals in  $\Gamma$ -nLA-rings. Some characterizations of fuzzy left (right) ideals of a  $\Gamma$ -nLA-ring N are related to level left (right) ideals.

**Keywords** :  $\Gamma$  -nLA-ring; ideal; level;  $\Gamma$  -nLA-subring

#### 1. Introduction

Let N be a nonempty set. A fuzzy subset of f is, by definition, an arbitrary mapping  $f: N \rightarrow [0,1]$ , where [0,1] is the usual interval of real numbers. Lotfi A. Zadeh [10] in 1965 introduced the notion of a describe fuzzv set to vagueness mathematically in its very abstractness and to solve such problems he gave a certain grade of membership to each member of a given set. This in fact laid the basic of fuzzy set theory. In [1], Booth studied and gave a note on  $\Gamma$  -near rings. The notion of fuzzy coset was introduced by Sathyanarayana [7]. In [3], Jun et al. considered the fuzzification of left (resp. right) ideals of  $\Gamma$ -near rings, and

investigated the related properties. Jun [2] introduced the notion of fuzzy left (resp. right) ideals, normal fuzzy ideals and fuzzy maximal ideals of  $\Gamma$ -Near-rings, and studied some of their properties.

In 1981, the notion of  $\Gamma$ -semigroups was introduced by Sen [8]. A groupoid S is called a  $\Gamma$ -left almost semigroup (simply a  $\Gamma$ -LA-semigroup) if it satisfies the left invertive law:

$$(a\gamma b)\alpha c = (c\gamma b)\alpha a$$
,

for all  $a,b,c\in S$  and  $\gamma,\alpha\in\Gamma$  as in Zadeh [9]. This structure is also known as a  $\Gamma$ -Abel-Grassmann's groupoid ( $\Gamma$ -LA-semigroup). In this paper, we are going to

investigate some interesting properties of recently discovered classes, namely  $\Gamma$ -LA-semigroup always satisfies the  $\Gamma$ -medial law:

$$(a\gamma b)\alpha(c\beta d) = (d\gamma c)\alpha(b\beta a),$$

for all  $a,b,c,d\in S$  and  $\gamma,\alpha,\beta\in\Gamma$ , see Satyanarayana [6], while a  $\Gamma$ -LA-semigroup S with left identity e always satisfies  $\Gamma$ -paramedial law:

$$(a\gamma b)\alpha(c\beta d) = (a\gamma c)\alpha(b\beta d),$$

for all  $a,b,c,d\in S$  and  $\gamma,\alpha,\beta\in \Gamma$ . It was much later when Kamran [4] in 1987 succeeded in defining a non-associative group which they called an LA-group and can be equally manipulated with as a subtractive group. The introduction of a left almost group (simply an LA-group) is an offshoot of an LA-semigroup. An LA-group is a non-associative structure with interesting properties. Furthermore, in this paper we characterize the fuzzy left (right) ideals of a  $\Gamma$ -nLA-ring related to level left (right) ideals.

### 2. Preliminaries

In this section, we refer to [4, 5, 9], for some elementary aspects and quote a few definitions, and essential examples to step up this study. For more details, we refer to the papers in the references.

**Definition 2.1** [5] A groupoid S is called a **left almost semigroup** (simply an **LA-semigroup**) if it satisfies the left invertive law:

$$(ab)c = (cb)a$$

for all  $a,b,c \in S$ .

**Definition 2.2.** [9] Let S and  $\Gamma$  be nonempty sets. Then S is said to be a  $\Gamma$ -left almost semigroup (or simply a  $\Gamma$ -LA-semigroup), if there exists a mapping

$$S \times \Gamma \times S \rightarrow S$$

(the image of  $(a, \gamma, b)$  is  $a\gamma b$ ) satisfies the identity

$$(a\gamma b)\alpha c = (c\gamma b)\alpha a$$
,

for all  $a,b,c \in S$  and  $\gamma,\alpha \in \Gamma$ .

Example 2.3. [9] Let  $\Gamma = \{1,2,3\}$ . Define a mapping  $\square \times \Gamma \times \square \to \square$  by  $a\gamma b = b - \gamma - a$  for all  $a,b \in \square$  and  $\gamma \in \Gamma$  where "-" is a usual subtraction of integers. Then  $\square$  is a  $\Gamma$ -LA-semigroup.

**Definition 2.4.** [4] An LA-semigroup G with the binary operation " $\cdot$ " is said to be a **left almost group** (simply an **LA-group**) if the following conditions are satisfied:

- (i) There exists an element  $e \in G$  such that ea = a, for all  $a \in G$ .
- (ii) For  $a \in G$ , there exists  $a^{-1} \in G$  such that  $a^{-1}a = e$  and  $aa^{-1} = e$ .

**Definition 2.5.** Let (N,+) be an LA-group and  $\Gamma$  be a nonempty set. Then N is said to be a  $\Gamma$ -near left almost ring (or simply a  $\Gamma$ -nLA-ring), if there exists a mapping  $N \times \Gamma \times N \to N$  (the image of  $(x,\gamma,y)$  is  $x\gamma y$ ) satisfying the following conditions;

- (1).  $x\gamma(y+z) = x\gamma y + x\gamma z;$
- (2).  $(x\gamma y)\alpha z = (z\gamma y)\alpha x$ ,

for all  $x, y, z \in N$  and  $\gamma, \alpha \in \Gamma$ .

**Example 2.6.** Let N be an arbitrary nLA-ring and  $\Gamma$  any nonempty set. Define a mapping  $N \times \Gamma \times N \to N$  by  $x\gamma y = xy$  for all  $x,y \in N$  and  $\gamma \in \Gamma$ . It is easy to see that N is a  $\Gamma$ -nLA-ring.

Example 2.7. Let  $\Gamma = \square$ . Then  $\square$  is a  $\Gamma$ -nLA-ring by defining the binary operations as; for  $x,y\in \square$ ,  $x\oplus y=y-x$  and

$$x\gamma y = \begin{cases} 0 & ; x = 0 \text{ or } y = 0\\ y\gamma^{-1}x^{-1} & ; \text{ otherwise.} \end{cases}$$

By choosing x = 2, y = 3, we show that

$$(2 \cdot 3) \cdot 6 = 6 \cdot \frac{1}{3} \cdot \frac{1}{2} = 1$$

but  $(6 \cdot 3) \cdot 2 = 2 \cdot \frac{1}{3} \cdot \frac{1}{6} = \frac{1}{9}$ . Hence  $\Box$  is not an nLA-ring.

Let N be a  $\Gamma$ -nLA-ring. If S is a nonempty subset of N and S is itself a  $\Gamma$ -nLA-ring under the binary operation induced by N, then S is called a  $\Gamma$ -nLA-subring of N. A  $\Gamma$ -LA-subring I of N is called a **left ideal** of N if  $N\Gamma I \subseteq I$  and I is called a **right ideal** of N if for all  $m,n\in N,\gamma\in\Gamma$  and  $i\in I$  such that

$$(i+m)\gamma n - m\gamma n \in I$$

and I is called an **ideal** of N if I is both a left and a right ideal of N.

A function f from N to the unit interval [0,1] is a fuzzy subset of N [9]. The  $\Gamma$ -nLA-ring N itself is a fuzzy subset of N such that N(x)=1 for all  $x\in N$ , denoted by N. Let f and g be two fuzzy subsets of N. Then the inclusion relation  $f\subseteq g$  is defined by  $f(x)\leq g(x)$ , for all  $x\in N$ . The intersection of f and g,  $f\cap g$  and  $f\cup g$  are fuzzy subsets of N defined by

$$(f \cap g)(x) = \min\{f(x), g(x)\},$$
  
$$(f \cup g)(x) = \max\{f(x), g(x)\}$$

for all  $x\in N$ . More generally, if  $\left\{f_{\alpha}:\alpha\in\beta\right\}$  is a family of fuzzy subsets of N, then  $\bigcap_{\alpha\in\beta}f_{\alpha}$  and  $\bigcup_{\alpha\in\beta}f_{\alpha}$  are defined as

follows:

$$\left(\bigcap_{\alpha\in\beta} f_{\alpha}\right)(x) = \bigcap_{\alpha\in\beta} f_{\alpha}(x)$$

$$= \inf\left\{f_{\alpha}(x) : \alpha\in\beta\right\},$$

$$\left(\bigcup_{\alpha\in\beta} f_{\alpha}\right)(x) = \bigcup_{\alpha\in\beta} f_{\alpha}(x)$$

$$= \sup\left\{f_{\alpha}(x) : \alpha\in\beta\right\}$$

and will be the intersection and union of the family  $\left\{f_{\alpha}: \alpha \in \beta\right\}$  of fuzzy subsets of N. The **product**  $f\Gamma g$  is defined as follows;

$$(f\Gamma g)(x) = \begin{cases} \bigcup_{x = y\gamma z} \min \left\{ f(y), g(z) \right\} & \text{; for some } y, z \in N, \gamma \in \Gamma, \text{ such that } x = yz \\ 0 & \text{; otherwise} \end{cases}$$

**Definition 2.8**. A fuzzy subset f of N is called a **fuzzy**  $\Gamma$  -nLA-subring of N if

$$f(x-y) \ge \min\{f(x), f(y)\}$$

and

$$f(x\gamma y) \ge \min\{f(x), f(y)\},\$$

for all  $x, y \in N$  and  $\gamma \in \Gamma$ . A fuzzy  $\Gamma$ -nLA-subring f of a  $\Gamma$ -nLA-ring N is called a **fuzzy left ideal** of N if  $f(x\gamma y) \ge f(y)$  for all  $x, y \in N$  and  $\gamma \in \Gamma$ . A fuzzy right ideal of N is a fuzzy  $\Gamma$  -nLA-subring f of N such that

$$f((x+y)\gamma z - y\gamma z) \ge f(x),$$

for all  $x, y, z \in N$  and  $\gamma \in \Gamma$ . A fuzzy **ideal** of N is a fuzzy  $\Gamma$ -nLA-subring f of N such that  $f(x\gamma y) \ge f(y)$  and

$$f((x+y)\gamma z - y\gamma z) \ge f(x)$$
.

for all  $x, y, z \in N$  and  $\gamma \in \Gamma$ .

# 3. Fuzzy Sets

The results of the following theorems seem to play an important role to study fuzzy ideals in  $\Gamma$ -nLA-rings; these facts will be used frequently and normally we shall make no reference to this Lemmas.

**Lemma 3.1.** Let N be a  $\Gamma$ -nLA-ring. If f, g, h are fuzzy subsets of N, then

$$(f\Gamma g)\Gamma h = (h\Gamma g)\Gamma f.$$

**Proof.** Assume that f, g, h are fuzzy subsets of N. Let  $x \in N$ . Then

$$(f\Gamma g)\Gamma h(x) = \bigcup_{x=yyz} \min\{(f\Gamma g)(y), h(z)\}$$
$$= \bigcup_{x=yyz} \min\{\bigcup_{y=aab} \min\{f(a), g(b)\}, h(z)\}$$

$$= \bigcup_{x=(aab)\gamma z} \min \left\{ \min \left\{ f(a), g(b) \right\}, h(z) \right\}$$
$$= \bigcup_{x=(zab)\gamma a} \min \left\{ \min \left\{ h(z), g(b) \right\}, f(a) \right\}$$

$$\leq \bigcup_{x=(zab)\gamma a} \min \left\{ \bigcup_{zab=c\beta d} \min \left\{ h(c), g(d) \right\}, f(a) \right\}$$

$$= \bigcup_{x=(zab)\gamma a} \min \left\{ (h\Gamma g)(z\alpha b), f(a) \right\}$$

$$= \bigcup_{x=w\gamma a} \min \left\{ (h\Gamma g)(w), f(a) \right\}$$

$$= (h\Gamma g)\Gamma f(x).$$

Thus 
$$(f\Gamma g)\Gamma h\subseteq (h\Gamma g)\Gamma f$$
. Similarly, 
$$(h\Gamma g)\Gamma f\subseteq (f\Gamma g)\Gamma h$$

and hence  $(f\Gamma g)\Gamma h = (h\Gamma g)\Gamma f$ .

If N is a  $\Gamma$ -nLA-ring and F(N) is the collection of all fuzzy subsets of N, then  $(F(N), \Gamma)$  is an LA-semigroup.

**Lemma 3.2.** Let N be a  $\Gamma$ -nLA-ring with left identity. If f, g, h are fuzzy subsets of N, then  $f\Gamma(g\Gamma h) = g\Gamma(f\Gamma h)$ .

**Proof.** Assume that f, g, h are fuzzy subsets of N. Let  $x \in N$ . Then  $(f\Gamma(g\Gamma h))(x)$ 

$$= \bigcup_{x=yyz} \min \{ f(y), g\Gamma h(z) \}$$

$$= \bigcup_{x=yyz} \min \{ f(y), \lim_{z \to 0} \{ g(z), h(z) \} \}$$

$$= \bigcup_{x=y\gamma z} \min \left\{ f(y), \bigcup_{z=aab} \min \left\{ g(a), h(b) \right\} \right\}$$

$$= \bigcup_{x=y\gamma(aab)} \min\{f(y), \min\{g(a), h(b)\}\}$$

$$= \bigcup_{x=a\gamma(yab)} \min\{g(a), \min\{f(y), h(b)\}\}$$

$$\leq \bigcup_{x=a\gamma(yab)} \min\{g(a), \bigcup_{yab=c\beta d} \min\{f(c), h(d)\}\}$$

$$= \bigcup_{x=a\gamma(yab)} \min\{g(a), f\Gamma h(y\alpha b)\}$$

$$= \bigcup_{x=a\gamma w} \min\{g(a), f\Gamma h(w)\}$$

$$= (g\Gamma(f\Gamma h))(x).$$

Thus 
$$f\Gamma(g\Gamma h)\subseteq g\Gamma(f\Gamma h)$$
. Similarly,  $g\Gamma(f\Gamma h)\subseteq f\Gamma(g\Gamma h)$  and hence  $f\Gamma(g\Gamma h)=g\Gamma(f\Gamma h)$ .

Theorem 3.3. Let f be a fuzzy subset of a  $\Gamma$ -nLA-ring N. Then f is a fuzzy  $\Gamma$ -nLA-subring of N if and only if  $f\Gamma f \subseteq f$  and  $f(x-y) \ge \min\{f(x), f(y)\}$  for all  $x,y \in N$ .

**Proof.** ( $\Rightarrow$ ) Suppose that f is a fuzzy  $\Gamma$ -nLA-subring of N. Let  $x \in N$  and  $\gamma \in \Gamma$ . If  $f\Gamma f(x)=0$ , then  $f\Gamma f\subseteq f$ . Otherwise

$$f\Gamma f(x) = \bigcup_{x=y\gamma z} min\{f(y), f(z)\}$$

$$\leq \bigcup_{x=y\gamma z} f(y\gamma z)$$

$$= f(x).$$

Thus  $f\Gamma f \subseteq f$ .

$$(\Leftarrow) \text{ Assume that } f\Gamma f \subseteq f \text{ and }$$
 
$$f(x-y) \ge \min \big\{ f(x), f(y) \big\},$$

for all  $x, y \in N$ . Let  $x, y \in N$  and  $\gamma \in \Gamma$ . Then

$$f(x\gamma y) \ge f\Gamma f(x\gamma y)$$

$$= \bigcup_{x\gamma y = aab} min\{f(a), f(b)\}$$

$$\ge min\{f(x), f(y)\}.$$

This implies that f is a fuzzy  $\Gamma$ -nLA-subring of N.

Theorem 3.4. Let f be a fuzzy  $\Gamma$ -nLA-subring of a  $\Gamma$ -nLA-ring N. Then f is a fuzzy left ideal of N if and only if  $N\Gamma f\subseteq f$ .

**Proof.** ( $\Rightarrow$ ) Suppose that f is a fuzzy left ideal of N. Let  $x \in N$  and  $\gamma \in \Gamma$ . If  $N\Gamma f(x) = 0 \le f(x)$ , then  $N\Gamma f \subseteq f$ .

Otherwise 
$$N\Gamma f(x) = \bigcup_{x=y\gamma z} \min \{N(y), f(z)\}$$

$$= \bigcup_{x=y\gamma z} \min\{1, f(z)\}$$

$$= \bigcup_{x=y\gamma z} f(z)$$

$$\leq \bigcup_{x=y\gamma z} f(y\gamma z)$$

$$= f(x).$$

Thus  $N\Gamma f \subseteq f$ .

 $(\Leftarrow) \quad \text{Suppose that} \quad N\Gamma f \subseteq f. \quad \text{Let} \\ x \in N \text{ and } \gamma \in \Gamma. \text{ Then}$ 

$$f(x\gamma y) \ge N\Gamma f(x\gamma y)$$

$$= \bigcup_{x\gamma y = aab} min\{N(a), f(b)\}$$

$$\ge min\{N(a), f(y)\}$$

$$= min\{1, f(y)\}$$

$$= f(y).$$

This implies that f is a fuzzy left ideal of N.

Theorem 3.5. Let N be a  $\Gamma$ -nLA-ring with left identity N. Then  $N\Gamma N=N$ .

**Proof.** Let  $x \in N$ . Then

$$N\Gamma N(x) = \bigcup_{x=y\gamma z} \min \{N(y), N(z)\}$$

$$= \bigcup_{x=y\gamma z} \min \{1,1\}$$

$$= 1$$

$$= N(x).$$

This implies that  $N\Gamma N=N$ .

Theorem 3.6. Let I be a nonempty subset of a  $\Gamma$ -nLA-ring N and  $f_I:N \to [0,1]$  be a fuzzy subset of N such that

$$f_I(x) = \begin{cases} 1 & \text{; } x \in I \\ 0 & \text{; otherwise.} \end{cases}$$

Then I is a  $\Gamma$ -nLA-subring of N if and only if  $f_I$  is a fuzzy  $\Gamma$ -nLA-subring of N.

Proof.  $(\Rightarrow)$  Suppose that I is a  $\Gamma$ -nLA-subring of N. Let  $x,y\in N$  and  $\gamma\in\Gamma$ . If  $x\not\in I$  or  $y\not\in I$ , then  $f_I(x)=0$  or  $f_I(y)=0$  so that

$$f_I(x\gamma y) \ge 0 = \min\{f_I(x), f_I(y)\}$$

 $f_I(x-y) \ge 0 = \min \big\{ f_I(x), f_I(y) \big\}.$  If  $x,y \in I$ , then  $f_I(x) = 1$  and  $f_I(y) = 1$  so that

$$f_I(x\gamma y) = 1 = \min\{f_I(x), f_I(y)\}$$
 and

$$f_I(x-y) = 1 = min\{f_I(x), f_I(y)\}.$$

Therefore  $f_I$  is a fuzzy  $\Gamma$  -nLA-subring of N.

 $(\Leftarrow) \text{ Assume that } f_I \text{ is a fuzzy } \Gamma \text{-nLA-subring of } N. \text{ Let } x,y\in I \text{ and } \gamma\in\Gamma.$  Since

$$f_{I}(x\gamma y) \ge \min\{f_{I}(x), f_{I}(y)\}$$

$$=\{1,1\}$$

$$=1$$

and

$$f_{I}(x-y) \ge \min\{f_{I}(x), f_{I}(y)\}$$

$$= \{1,1\}$$

$$= 1$$

this implies  $f_I(x\gamma y)=1$  and  $f_I(x-y)=1$ . By the assumption,  $x\gamma y, x-y\in I$ . Hence I is a  $\Gamma$ -nLA-subring of N.

Theorem 3.7. Let I be a nonempty subset of a  $\Gamma$ -nLA-ring N and  $f_I:N \to [0,1]$  be a fuzzy subset of N such that

$$f_I(x) = \begin{cases} 1 & \text{;} x \in I \\ 0 & \text{; otherwise.} \end{cases}$$

Then I is a left ideal of N if and only if  $f_I$  is a fuzzy left ideal of N.

Proof.  $(\Longrightarrow)$  Suppose I is a left ideal of N. By Theorem 3.6, we get  $f_I$  is a fuzzy  $\Gamma$ -nLA-subring of N. Let  $x,y\in N$  and  $\gamma\in\Gamma$ . If  $y\not\in I$ , then  $f_I(y)=0$  so that  $f_I(x\gamma y)\geq 0=f_I(y)$ . If  $y\in I$ , then  $x\gamma y\in I$  since I is a left ideal of N. This implies that  $f_I(x\gamma y)=1=f_I(y)$ . Thus  $f_I$  is a fuzzy left ideal of N.

 $(\Leftarrow) \text{ Assume that } f_I \text{ is a fuzzy left ideal}$  of N. By Theorem 3.6, we get I is a  $\Gamma$ -nLA-subring of N. Let  $r \in N, \gamma \in \Gamma$  and  $x \in I$ . Since  $f_I(r\gamma x) \geq f_I(x) = 1$  and  $f_I(r\gamma x) \in [0,1],$ 

we get  $f_I(r\gamma x) = 1$ . This implies that  $r\gamma x \in I$  and hence I is a left ideal of N.

Theorem 3.8. Let I be a nonempty subset of a  $\Gamma$ -nLA-ring N and  $f_I:N \to [0,1]$  be a fuzzy subset of N such that

$$f_I(x) = \begin{cases} 1 & \text{; } x \in I \\ 0 & \text{; otherwise.} \end{cases}$$

Then I is a right ideal of N if and only if  $f_I$  is a fuzzy right ideal of N.

**Proof.** ( $\Longrightarrow$ ) Suppose I is a right ideal of N. By Theorem 3.6, we get  $f_I$  is a fuzzy  $\Gamma$ -nLA-subring of N. Let  $x,y,z\in N$  and  $\gamma\in\Gamma$ . If  $x\not\in I$ , then  $f_I(x)=0$  so that

$$f_I((x+y)\gamma z - y\gamma z) \ge 0 = f_I(x).$$

If  $x \in I$ , then  $(x+y)\gamma z - y\gamma z \in I$  since I is a right ideal of N. This implies that

$$f_I((x+y)\gamma z - y\gamma z) = 1 = f_I(x).$$

Thus  $f_I$  is a fuzzy right ideal of N.

 $(\Leftarrow) \text{ Assume that } f_I \text{ is a fuzzy right}$  ideal of N. By Theorem 3.6, we get I is a  $\Gamma$  -nLA-subring of N. Let  $y,z\in N,\gamma\in \Gamma$  and  $x\in I.$  Since

$$f_I((x+y)\gamma z - y\gamma z) \ge f_I(x) = 1 \text{ and}$$
 
$$f_I((x+y)\gamma z - y\gamma z) \in [0,1],$$

we get  $f_I((x+y)\gamma z - y\gamma z) = 1$ . This implies that  $(x+y)\gamma z - y\gamma z \in I$  and hence I is a right ideal of N.

Theorem 3.9. Let I be a nonempty subset of a  $\Gamma$ -nLA-ring N and  $f_I: N \to [0,1]$  be a fuzzy subset of N such that

$$f_I(x) = \begin{cases} 1 & \text{; } x \in I \\ 0 & \text{; otherwise.} \end{cases}$$

Then I is an ideal of N if and only if  $f_I$  is a fuzzy ideal of N.

**Proof.** It is straightforward by Theorem 3.7 and Theorem 3.8.

Theorem 3.10. Let I be a nonempty subset of a  $\Gamma$ -nLA-ring  $N,m\in(0,1]$  and  $f_I$  be a fuzzy set of N such that

$$f_I(x) = \begin{cases} m & ; x \in I \\ 0 & ; \text{ otherwise.} \end{cases}$$

Then the following properties hold.

- (1). I is a  $\Gamma$ -nLA-subring of N if and only if  $f_I$  is a fuzzy  $\Gamma$ -nLA-subring of N.
- (2). I is a left ideal of N if and only if  $f_I$  is a fuzzy left ideal of N.
- (3). I is a right ideal of N if and only if  $f_I$  is a fuzzy right ideal of N.
- (4). I is an ideal of N if and only if  $f_I$  is a fuzzy ideal of N.

Proof. It is straightforward by Theorem 3.9.

**Definition 3.11.** Let f be a fuzzy subset of a  $\Gamma$ -nLA-ring N and  $t \in (0,1]$ . Then the set

$$U(f,t) := \{x \in N : f(x) \ge t\}$$

is called the **level set** of f.

Lemma 3.12. Let f be a fuzzy subset of a  $\Gamma$  -nLA-ring N. Then f is a fuzzy  $\Gamma$ -nLA-subring of N if and only if  $U(f,t) \neq \emptyset$  is a  $\Gamma$ -nLA-subring of N, for all  $t \in (0,1]$ .

Proof. It is straightforward by Theorem 3.10.

Theorem 3.13. Let f be a fuzzy subset of a  $\Gamma$ -nLA-ring N. Then f is a fuzzy left ideal (right ideal, ideal) of N if and only if  $U(f,t)\neq\emptyset$  is a left ideal (right ideal, ideal) of N, for all  $t\in(0,1]$ .

Proof. It is straightforward by Theorem 3.10.

**Lemma 3.14.** Let f be a fuzzy  $\Gamma$ -nLA-subring of a  $\Gamma$ -nLA-ring N. Then  $f(0) \ge f(x)$ , for all  $x \in N$ .

**Proof.** Let  $x \in N$ . Since f is a fuzzy  $\Gamma$ -nLA-subring of N, we get

$$f(0) = f(x-x)$$

$$\geq \min\{f(x), f(x)\}$$

$$= f(x).$$

This implies that  $f(0) \ge f(x)$ , for all  $x \in N$ .

Theorem 3.15. Let f be a fuzzy subset of a  $\Gamma$ -nLA-ring N. If f is a fuzzy  $\Gamma$ -nLA-subring of N, then  $N_f = \left\{x \in N : f(x) = 0\right\} \quad \text{is a} \quad \Gamma$ -nLA-subring of N.

**Proof.** Assume that f is a fuzzy  $\Gamma$ -nLA-subring of N. Let  $x,y\in N_f$  and  $\gamma\in\Gamma$ . Then

$$f(x) = f(0)$$

and 
$$f(y) = f(0)$$
 so that 
$$f(x-y) \ge \min\{f(x), f(y)\}$$
$$= \min\{f(0), f(0)\}$$
$$= f(0)$$

and

$$f(x\gamma y) \ge \min\{f(x), f(y)\}\$$
  
= 
$$\min\{f(0), f(0)\}\$$
  
= 
$$f(0).$$

By Lemma 3.14, we get f(x-y)=f(0) and  $f(x\gamma y)=f(0)$  which implies that  $x-y, x\gamma y \in N_f.$ 

Hence  $N_f$  is a  $\Gamma$ -nLA-subring of N.

Theorem 3.16. Let f be a fuzzy subset of a  $\Gamma$ -nLA-ring N. If f is a fuzzy left ideal of N, then  $N_f = \left\{x \in N : f(x) = 0\right\}$  is a left ideal of N.

**Proof.** Assume that f is a fuzzy left ideal of N. By Theorem 3.15, we get  $N_f$  is a  $\Gamma$ -nLA-subring of N. Let  $r \in N, \gamma \in \Gamma$  and  $x \in N_f$ . Then

$$f(x) = f(0)$$

so that  $f(r\gamma x) \geq f(x) = f(0)$ . By Lemma 3.14 and  $f(r\gamma x) \in [0,1]$ , we get  $f(r\gamma x) = f(0)$  which implies that  $r\gamma x \in N_f$ . Hence  $N_f$  is a left ideal of N.

Theorem 3.17. Let f be a fuzzy subset of a  $\Gamma$ -nLA-ring N. If f is a fuzzy right ideal of N, then  $N_f = \left\{x \in N : f(x) = 0\right\}$  is a right ideal of N.

**Proof.** Assume that f is a fuzzy right ideal of N. By Theorem 3.15, we get  $N_f$  is a  $\Gamma$ -nLA-subring of N. Let  $y,z\in N,\gamma\in \Gamma$  and  $x\in N_f$ . Then f(x)=f(0) so that

$$f((x+y)\gamma z - y\gamma z) \ge f(x) = f(0).$$

By Lemma 3.14, we get

$$f((x+y)\gamma z - y\gamma z) = f(0)$$

which implies that  $(x+y)\gamma z - y\gamma z \in N_f$ . Hence  $N_f$  is a right ideal of N.

Theorem 3.18. Let f be a fuzzy subset of a  $\Gamma$  -nLA-ring N. If f is a fuzzy ideal of N, then  $N_f = \{x \in N : f(x) = 0\}$  is an ideal of N

**Proof.** It is straightforward by Theorem 3.16 and Theorem 3.17.

## 4. Conclusions and Discussion

Many new classes of fuzzy subsets in  $\Gamma$ -nLA-rings have been discovered recently. All these have attracted researchers of the field to investigate these newly discovered classes in detail. This article investigates the  $\Gamma$ -nLA-subring, fuzzy left and fuzzy right ideals in  $\Gamma$ -nLA-rings. Some characterizations of fuzzy left (right) ideals of a  $\Gamma$ -nLA-ring N. related to level left (right) ideals.

#### 5. References

- [1] Booth, G. L. 1988."A note on  $\,\Gamma$  -nearrings". Stud. Sci. Math. Hung. 471-475.
- [2] Jun, Y. B., Kim, K.H. and Öztürk, M.A. 2001. "On fuzzy ideals of gamma nearrings". J. Fuzzy Math. 9(1): 51-58.

- [3] Jun, Y.B, Sapanci, M. and Öztürk, M.A. 1998. "Fuzzy ideals in gamma near-rings". Tr. J. of Mathematics. 22: 449-459.
- [4] Kamran, S. 1987. "Structural properties of LA-semigroups". M. Phil. Dissertation, Quaid-i-Azam University, Islamabad.
- [5] Khan, M., Amjid, V. and Faisal. 2010. "Characterizations of intra-regular  $\Gamma$  - AG\*\*-groupoids by the properties of their  $\Gamma$ -ideals". https://arxiv.org/pdf/1011.1364.pdf (accessed: 4 September 2013).
- [6] Satyanarayana, Bh. 1981. "Contributions to near-ring theory". Doctoral Thesis, Nagarjuna Univ.
- [7] Sen, M.K. 1981. "On  $\Gamma$ -semigroups". Proceeding of International Symposium on Algebra and Its Applications, Decker Publication: New York. 301-308,
- [8] Shah, T. and Rehman, I. 2010. "On  $\Gamma$  ideals and  $\Gamma$  -bi-ideal in  $\Gamma$  -AG-groupoids". Int. J Alg. 4: 267-276.
- [9] Zadeh, L.A. 1965. "Fuzzy sets". Information and control. 8: 338–353.