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Abstract 

        Feeding the elastic rope steadily from the height toward a plane with constant velocity results in the 
circular coiling which is a manifestation of the buckling instability. The axial compressive forces, responsible for 
the buckling instability, are the own weight of rope due to the gravity and the inertial force due to the momentum 
of rope. The coiling frequency and the coiling radius are studied as a function of height and feeding velocity. 
Remarkably, there exists a characteristic velocity  at which the coiling radius is largest. At feeding velocity 
faster than the characteristic velocity  the inertial force dominates over the gravitational force. This 
characteristic velocity  is experimentally found to increase with decreasing height  in qualitative agreement 
with the dimensional analysis argument which predicts the relationship .  
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Introduction 
       Elastic objects deform continuously their shapes 
in response to the internal and external forces. In 
equilibrium the resulting shape is the conformation 
that minimizes energy. The deformation, such as 
compressing, bending, and twisting, brings the system 
from the present conformation to the ground state 
conformation. One of the equilibrium shapes is a coil 
with two possible chiralities, either right-handed or left-
handed. Under certain circumstances both right-
handedness and left-handedness are equally 
energetically favorable and thus coexist together, for 
example Figure 1(a) depicting the tendril of a Thai 
climbing plant, Tumlung, whose the lower portion is a 
right-handed coil and the upper portion is a left-
handed coil. The coexistence of the right handedness 
and the left handedness occurs when decreasing the 
tension slowly with both ends not allowed to rotate [1].  
 
   

 

 

 

 

 

 

 

 

 

Figure 1 Right-handed and left-handed coils 
commonly found in nature. (a) Tendril of Tumlung 
winds both right-handed and left-handed directions. (b) 
B-DNA with 10.5 base pairs per turn is right-handed 
whereas Z-DNA with 12 base pairs per turn is left-
handed. 
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On molecular level, as illustrated in Figure 1(b) the 
right-handed double helix, called B-DNA, is 
undertwisted and thus is transformed to the left-
handed double helix, called Z-DNA, with identical 
sequence of base pairs [2].    
       From dynamical point of view the coiling is a 
consequence of buckling instability, caused by the too 
large amplitude bending. Such bending is created by 
an axial compressive stress. The down-to-earth 
example seen in our daily life is the coiling of the 
honey stream falling from the sufficient height [3]. To 
elucidate the general features of this phenomenon we 
mimic it by a well-controlled table-top experiment in 
which the rope is fed to a plane with constant rate and 
coils up repeatedly.    
 
Materials and Methods 
        The 6 m long rope with radius  is fed 
from the platform toward the plane by a pulley driven 
by the dc motor. Its mass density  is . Its 
cross-section area  is  so the moment of 
inertia of the cross-section  is . The 
Young’s modulus  is 2.43 MPa determined from the 
slope of the stress-strain curve. The radius , cross- 
section area , and the moment of inertia of the 
cross-section  are the geometrical properties of the 
rope. The mass density  and the Young’s modulus   
are the material properties of the rope. The interplay 
of the geometrical and material properties dictates the 
behavior of rope coiling. The Figure 2 shows a 
schematic of the experimental setup. The height  
ranges from 6.5 cm to 168.5 cm. The feeding velocity 
of the rope , which is controlled by the voltage 
applied to a dc motor, ranges from 3 cm/s to 64 cm/s. 
The frequency of the pulley rotation is measured by 
an encoder which generates a train of 500 step 
functions per a turn of rotation. Knowing the frequency 
of the pulley rotation and the radius of pulley 6.4 cm, 
the feeding velocity  is straightforwardly calculated. 
Upon reaching the plane the rope coils steadily with 
constant frequency . It interrupts the LED beam of 

the photoelectric sensor twice for each turn of coiling. 
Its coiling frequency  can be deduced from 
examining the output signal of the photoelectric sensor 
monitored on an oscilloscope. Its coiling radius  is 
measured by a vernier. The periodically varying shape 
of the rope is recorded by              a camera. 

 

Figure 2 Experimental setup for measuring the coiling 
frequency  of the rope fed from the height  with 
uniform velocity . 

Results and Discussion 
        Basically the behavior of rope coiling is 
determined by the interplay of three forces exerting on 
the rope, the elastic force  being the internal force 
due to deformation, the gravitational force  due to 
gravity, and the inertial force  due to the momentum 
of rope [4]. The latter two forces are external forces. 
The relative role of these three forces is quantified by 
three dimensionless parameters. One is the Froude 
number measuring the ratio of the kinetic energy to 
the gravitational potential energy, . The 
second, denoted by , is the ratio of the gravitational 
potential energy to the flexural energy, . 
The third is the slenderness measuring the rope 
radius to the height, . In our experiments the 
Froude number  ranges from , achieved at 
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minimum velocity 3 cm/s and maximum height 168.5 
cm, to , achieved at maximum velocity 64 cm/s 
and minimum height 6.5 cm. For Froude number 

 the gravitational force  is most dominant. 
Increasing the Froude number to the order of one 

, the inertial force  now plays as important 
role as the gravitational force . The parameter  
ranges from 1, achieved at minimum height 6.5 cm, to 

, achieved at maximum height 168.5 cm. The 
slenderness  ranges from , achieved at 
maximum height 168.5 cm, to , achieved at 
minimum height 6.5 cm. 
    

 

Figure 3 The height dependence of the coiling 
frequency is shown for feeding velocities , 

, and .  

       As shown in Figure 3, the rope fed with the slow 
feeding velocity  coils with smaller frequency 

 when the height  is increased. However this trend 
has not persisted into the large height regime. Beyond 
the 100-cm height the coiling frequency  turns out to 
be relatively height independence, signifying the 
dominance of the gravitational force . For 
intermediate feeding velocity , except from 
the height smaller than 30 cm and from the height 
larger than 160 cm, the coiling frequency  decreases 
more rapidly with increasing height  than that in the 
slow feeding velocity. For fast feeding velocity 

 the coiling frequency  also decreases with 
increasing height  but with the slight fluctuation. At 
this feeding velocity , i.e. Froude number  
being approximately of order one, the equally 
important roles of the gravitational force  and the 
inertial force  give rise to such slight fluctuation 
which in liquid rope coiling appears as the multiple 
values of coiling frequency  observed at a single 
height [5].      

 

Figure 4 The height dependence of the coiling radius 
is shown for feeding velocities , , 
and . For comparison the dash line is the 
radius of curvature, , created by the 
weight-induced bending only. 

       Given a value of feeding velocity , the coiling 
radius  becomes bigger at large height as shown in 
Figure 4. However the behavior of coiling radius  
looks complicated at small height less than 30 cm. 
The fact that increasing the height  enlarges the 
coiling radius  and slows down the coiling frequency 

 can be understood on a basis of the conservation of 
rope mass in order to keep  constant. The 
horizontal dash line in Figure 4 shows the radius of 
curvature, created by the bending due to the own 
weight of rope,  which is about 3 cm for the 
rope we use [6]. The lower portion of the rope that 
lays down on the plane stops instantly, i.e. , 



Journal of Science & Technology, Ubon Ratchathani University, Special Issue, October 2016             25 

 

while the upper portion has still moved continuously 
with feeding velocity  toward the plane. This 
momentum change within the rope gives rise to the 
force  compressing axially on the rope, creating 
the bending in addition to the one due to the own 
weight of rope. As a result the coiling radius  is 
overall above 3 cm, especially at feeding velocity 

. Increasing the feeding velocity from 

 to  the coiling radius  gets larger 
over a wide range of heights. However the further 
increase in the feeding velocity from  to 

 turns out to narrow the coiling radius . This 
suggests that there exists a characteristic velocity  
across which the behavior of coiling radius  changes 
qualitatively. 

 

Figure 5 The velocity dependence of the coiling radius 
is shown for height  and . The solid 
lines are guide to eyes. In the large feeding velocity 
regime the decrease of coiling radius with increasing 
height signifies the dominance of the inertial force  
over the gravitational force .        

      Given a value of height , shown in Figure 5, the 
coiling radius  increases with feeding velocity  and 
reaches a maximum at the characteristic velocity 

 for height 168.5 cm, and  for 

height 28.5 cm. The further increase in feeding 
velocity  beyond the characteristic velocity  turns 
out to make the coiling radius  smaller. This 
qualitative change in the behavior of coiling radius , 
when crossing the characteristic velocity , is 
attributed to a fact that at large feeding velocity the 
inertial force  becomes more important. As the 
height  smaller, the characteristic velocity  is 
shifted to the larger value, delaying the inertial force 

 to play the major role. This finding can intuitively 
be understood on a basis that the rope fed from the 
smaller height has the shorter length measured from 
the point of contact to the feeding point, thus it is 
more difficult to be buckled, namely the stronger force 
required to bend the rope. In addition to the own 
weight of rope, the compressive force  that leads 
to the buckling instability is provided by feeding 
velocity . To buckle the rope fed from the smaller 
height, the required stronger force is achieved by the 
faster feeding velocity , explaining why the 
characteristic velocity  increases with decreasing 
height . This conceptually appealing explanation can 
be described in a more quantitative way. To determine 
the characteristic velocity , balancing the elastic 
force  with the inertial force  yields 
the velocity, above which the inertial force  
dominates,  [4]. The Figure 4 suggests 
us to approximate , which is accurate up to a 
constant factor, giving an expression of the 
characteristic velocity . Substituting the 
values of rope radius , Young’s modulus , and 
mass density  predicts theoretically the characteristic 
velocity  for height 168.5 cm, and  for 
height 28.5 cm in reasonably good agreement with the 
ones observed in experiments.                                                                 

Conclusions 
    Our table-top experiments reveal the generic 
features of coiling of the elastic rods which are not 
restricted to the solid-like objects with using rope as a 
representative. The decrease of coiling frequency  
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with increasing the height , shown in Figure 3, is 
also observed in the coiling of the highly viscous 
silicone oil when height less than 10 cm [7]. The 
reason for the much smaller height range, compared 
to 168.5 cm for the rope coiling, is that in the case of 
liquid rope coiling, like silicone oil, the height scale is 
of order  for kinematic viscosity . 
In liquid rope coiling the coiling frequency  is 
typically , for kinematic viscosity 

, which is higher than that in rope coiling.  
    The liquid rope coiling also exhibits an increase in 
coiling radius  with increasing the height , similar to 
Figure 4 for the rope coiling. The difference between 
rope coiling and liquid rope coiling in this respect is 
that the latter has the extremely small coiling radius  
being of order  for kinematic viscosity 

 and flow rate  [8].  
    In the large feeding velocity regime, i.e.  and 
ignoring the secondary peak in Figure 5, the coiling 
radius decreases with increasing the feeding velocity 
in a power law fashion,  with exponent -1. In 
liquid rope coiling the coiling radius scales with the 
flow rate  as .3 Since the flow rate is 
simply , the coiling radius decreases with feeding 
velocity more slowly,  with exponent -1/3, in 
liquid rope coiling than in rope coiling. 
       The resemblance between rope coiling and liquid 
rope coiling may come with no surprise because they 
both originate from the buckling instability. For a 
resting plane the shape of rope coiling is perfectly 
circular. When the plane moves horizontally with 
constant velocity, such as a conveyor belt, the moving 
plane breaks the rotational symmetry of the circular 
coiling. The rope coiling bifurcates into a variety of 
shapes, initiating a series of shape transitions from the 
translated coiling, alternating loop, and eventually to 
the meandering as the velocity of the moving plane is 
increased [9]. The analogous phenomenon is also 
observed in the liquid rope coiling on the moving 
plane with one more shape emerges because of its 
viscous nature, namely transiting from the translated 

coiling, alternating loop, meandering, and finally to the 
catenary as the plane moves faster [10]. It is well 
known that as lowering temperatures the liquid transits 
to the solid with the breaking of both translational and 
rotational symmetry [11]. Despite being the out-of-
equilibrium transition, the shape transition is in some 
ways analogous to the phase transition.    
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